Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin-Ling Wang,* Shu-Ming Zhang and Fang-Ming Miao

College of Chemical and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

Correspondence e-mail:
wangjinling43@eyou.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.051$
$w R$ factor $=0.141$
Data-to-parameter ratio $=11.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

4-[(2-Hydroxyphenylamino)phenylmethylene]-5-methyl-2-phenyl-2H-pyrazol-3(4H)-one

The title compound, $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$, a condensation product of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and o-aminophenol, is a neutral tridentate ligand in enamine-keto form, due to a strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. A pair of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules to give dimers.

Comment

A view of the molecular structure of the title compound, (I), is shown in Fig. 1. The compound was prepared from the reaction of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and o-aminophenol, forming this tridentate ligand. In the pyrazole ring, the bond lengths $\mathrm{C} 1-\mathrm{C} 2, \mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 3-\mathrm{N} 1$, $\mathrm{N} 1-\mathrm{N} 2$ and $\mathrm{N} 2-\mathrm{C} 1$ (Table 1) lie between classical singleand double-bond lengths. The bond angles within this ring deviate by up to 4° from the 108° angle of a regular pentagon.

(I)

The bond lengths $\mathrm{O} 1-\mathrm{C} 1, \mathrm{C} 2-\mathrm{C} 5, \mathrm{C} 1-\mathrm{C} 2$ and $\mathrm{C} 5-\mathrm{N} 3$ also lie between classical single- and double-bond lengths. Atoms $\mathrm{O} 1, \mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 5$ and N 3 are essentially coplanar, the largest deviation from the mean plane being 0.020 (2) \AA for C5. The dihedral angle between this mean plane and that of the pyrazoline ring is $5.05(3)^{\circ}$, indicating a high degree of conjugation and electron delocalization. The dihedral angles between the first mean plane and phenyl rings $\mathrm{C} 11-\mathrm{C} 16$, $\mathrm{C} 21-\mathrm{C} 26$ and C31-C36 are 45.91 (3), 113.79 (4) and $129.96(4)^{\circ}$, respectively, because of steric hindrance effects. The $\mathrm{C} 11-\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 3$ torsion angle is $-4.7(3)^{\circ}$, different from the value of 16.7 (3) ${ }^{\circ}$ in 3-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenylpyrazol-4-ylmino)-4,4,4-trifluoro-1-(2-thienyl)-butane-1,2-dione (Wang et al., 2002). Small torsion angles for $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 5-\mathrm{N} 3 \quad\left[-2.6(4)^{\circ}\right]$ and $\mathrm{N} 3-\mathrm{C} 31-\mathrm{C} 32-\mathrm{O} 2$ $\left[-4.8(4)^{\circ}\right]$ show that atoms $\mathrm{O} 1, \mathrm{~N} 3$ and O 2 are in a cis conformation and can act as the coordinating atoms of a tridentate ligand.

A strong intramolecular $\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1$ hydrogen bond is found (Table 2), resulting in an enamine-keto tautomeric form. Pairs of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link molecules into centrosymmetric dimers, with the formation of a 14 -membered ring (Fig. 2).

Received 16 October 2002 Accepted 6 November 2002 Online 15 November 2002

Experimental

Ethanol solutions of 0.1 mol of PMBP and 0.1 mol of o-aminophenol were refluxed together for 4 h over a steam bath. The excess solvent was removed by evaporation and the concentrated solution was cooled in an ice bath with stirring. The title compound separated out as a cream powder, which was collected and dried in air. Brightyellow single crystals, suitable for X-ray analysis, were obtained by slow cooling of a warmed ethanol solution, and were dried in a vacuum over CaCl_{2}. The product is stable in air, and soluble in acetone and ethanol. Elemental analysis: calculated C 74.78, H 5.19, N 11.41%; found C 74.63 , H 5.09, N 11.41%.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=369.41$
Triclinic, $P \overline{1}$
$a=7.267(4) \AA$
$b=11.150(6) \AA$
$c=13.822(8) \AA$
$\alpha=111.794(9)^{\circ}$
$\beta=92.210(11)^{\circ}$
$\gamma=105.987(10)^{\circ}$
$V=987.2(10) \AA^{\circ}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.243 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2764 \\
& \quad \text { reflections } \\
& \theta=1.7-25.1^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.30 \times 0.25 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection
Bruker SMART 1000 CCD
1687 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=23.3^{\circ}$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 12$
$l=-9 \rightarrow 15$
3405 measured reflections
2830 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.141$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0697 P)^{2}\right.$
$+0.0157 P$]
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.005$
$\Delta \rho_{\max }=0.17 \mathrm{e}_{\AA^{-3}}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.012 (3)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 1$	$1.278(3)$	$\mathrm{N} 3-\mathrm{C} 5$	$1.340(4)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.326(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.444(4)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.423(3)$	$\mathrm{C} 2-\mathrm{C} 5$	$1.411(4)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.379(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.449(4)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{N} 2$	$105.6(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$105.0(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 1$	$111.9(2)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$111.8(3)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$105.5(2)$		

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 $\cdots \mathrm{O} 1$	0.86	2.01	$2.750(3)$	143
$\mathrm{O} 2-\mathrm{H} 2 \cdots 1^{\mathrm{i}}$	0.82	1.96	$2.724(3)$	155

Symmetry code: (i) $-x, 1-y, 1-z$.
H atoms were placed geometrically and refined with riding-model constraints.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve

Figure 1
The molecular structure of (I), shown with 50% probability displacement ellipsoids. The intramolecular hydrogen bond is represented by dashed lines.

Figure 2
A centrosymmetric dimer formed by hydrogen bonds (shown dashed).
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the foundation of Tianjin Scientific Committee (No. 003601711).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, J.-L., Yu, M., Su, X.-M. \& Miao, F.-M. (2002). Acta Cryst. E58, o385o387.

