ISSN 1600-5368

Jin-Ling Wang,* Shu-Ming Zhang and Fang-Ming Miao

College of Chemical and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China

wangjinling43@eyou.com

Key indicators

Single-crystal X-ray study T = 293 K Mean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.051 wR factor = 0.141 Data-to-parameter ratio = 11.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Correspondence e-mail:

4-[(2-Hydroxyphenylamino)phenylmethylene]-5-methyl-2-phenyl-2H-pyrazol-3(4H)-one

The title compound, C₂₃H₁₉N₃O₂, a condensation product of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and o-aminophenol, is a neutral tridentate ligand in enamine-keto form, due to a strong intramolecular $N-H \cdots O$ hydrogen bond. A pair of intermolecular O-H···O hydrogen bonds link molecules to give dimers.

Received 16 October 2002 Accepted 6 November 2002 Online 15 November 2002

Comment

A view of the molecular structure of the title compound, (I), is shown in Fig. 1. The compound was prepared from the reaction of 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP) and o-aminophenol, forming this tridentate ligand. In the pyrazole ring, the bond lengths C1-C2, C2-C3, C3-N1, N1-N2 and N2-C1 (Table 1) lie between classical singleand double-bond lengths. The bond angles within this ring deviate by up to 4° from the 108° angle of a regular pentagon.

The bond lengths O1-C1, C2-C5, C1-C2 and C5-N3 also lie between classical single- and double-bond lengths. Atoms O1, C1, C2, C5 and N3 are essentially coplanar, the largest deviation from the mean plane being 0.020 (2) Å for C5. The dihedral angle between this mean plane and that of the pyrazoline ring is 5.05 (3)°, indicating a high degree of conjugation and electron delocalization. The dihedral angles between the first mean plane and phenyl rings C11-C16, C21-C26 and C31-C36 are 45.91 (3), 113.79 (4) and 129.96 (4)°, respectively, because of steric hindrance effects. The C11-N2-N1-C3 torsion angle is -4.7 (3)°, different from the value of 16.7 (3)° in 3-(2,3-dihydro-1,5-dimethyl-3oxo-2-phenylpyrazol-4-ylmino)-4,4,4-trifluoro-1-(2-thienyl)butane-1,2-dione (Wang et al., 2002). Small torsion angles for C1-C2-C5-N3 [-2.6 (4)°] and N3-C31-C32-O2 $[-4.8 (4)^{\circ}]$ show that atoms O1, N3 and O2 are in a *cis* conformation and can act as the coordinating atoms of a tridentate ligand.

A strong intramolecular N3-H3···O1 hydrogen bond is found (Table 2), resulting in an enamine-keto tautomeric form. Pairs of intermolecular O-H···O hydrogen bonds link molecules into centrosymmetric dimers, with the formation of a 14-membered ring (Fig. 2).

Printed in Great Britain - all rights reserved

© 2002 International Union of Crystallography

Experimental

Ethanol solutions of 0.1 mol of PMBP and 0.1 mol of *o*-aminophenol were refluxed together for 4 h over a steam bath. The excess solvent was removed by evaporation and the concentrated solution was cooled in an ice bath with stirring. The title compound separated out as a cream powder, which was collected and dried in air. Brightyellow single crystals, suitable for X-ray analysis, were obtained by slow cooling of a warmed ethanol solution, and were dried in a vacuum over CaCl₂. The product is stable in air, and soluble in acetone and ethanol. Elemental analysis: calculated C 74.78, H 5.19, N 11.41%; found C 74.63, H 5.09, N 11.41%.

Z = 2

 $D_x = 1.243 \text{ Mg m}^{-3}$

Cell parameters from 2764

 $0.30 \times 0.25 \times 0.20 \ \mathrm{mm}$

1687 reflections with $I > 2\sigma(I)$

 $w = 1/[\sigma^2(F_o^2) + (0.0697P)^2]$

Extinction correction: *SHELXL*97 Extinction coefficient: 0.012 (3)

 $+2F_{c}^{2})/3$

+ 0.0157P]

where $P = (F_o^2)^2$

 $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

 $(\Delta/\sigma)_{\rm max} = 0.005$ $\Delta \rho_{\rm max} = 0.17 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation

reflections

T = 293 (2) K

Prism, yellow

 $\begin{aligned} R_{\rm int} &= 0.024 \\ \theta_{\rm max} &= 23.3^\circ \end{aligned}$

 $\begin{array}{l} h = -8 \rightarrow 8 \\ k = -12 \rightarrow 12 \end{array}$

 $l = -9 \rightarrow 15$

 $\theta = 1.7 - 25.1^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$

Crystal data

 $\begin{array}{l} C_{23}H_{19}N_{3}O_{2}\\ M_{r}=369.41\\ \text{Triclinic, }P\overline{1}\\ a=7.267~(4)~\text{\AA}\\ b=11.150~(6)~\text{\AA}\\ c=13.822~(8)~\text{\AA}\\ \alpha=111.794~(9)^{\circ}\\ \beta=92.210~(11)^{\circ}\\ \gamma=105.987~(10)^{\circ}\\ V=987.2~(10)~\text{\AA}^{3} \end{array}$

Data collection

Bruker SMART 1000 CCD diffractometer ω scans Absorption correction: none 3405 measured reflections 2830 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.141$ S = 0.982830 reflections 254 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.278 (3)	N3-C5	1.340 (4)
N1-C3	1.326 (4)	C1-C2	1.444 (4)
N1-N2	1.423 (3)	C2-C5	1.411 (4)
N2-C1	1.379 (3)	C2-C3	1.449 (4)
C3-N1-N2	105.6 (2)	C1-C2-C3	105.0 (2)
C1-N2-N1	111.9 (2)	N1-C3-C2	111.8 (3)
N2-C1-C2	105.5 (2)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3···O1	0.86	2.01	2.750 (3)	143
$O2-H2$ ··· $O1^{i}$	0.82	1.96	2.724 (3)	155

Symmetry code: (i) -x, 1 - y, 1 - z.

H atoms were placed geometrically and refined with riding-model constraints.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve

The molecular structure of (I), shown with 50% probability displacement ellipsoids. The intramolecular hydrogen bond is represented by dashed lines.

Figure 2

A centrosymmetric dimer formed by hydrogen bonds (shown dashed).

structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported by the foundation of Tianjin Scientific Committee (No. 003601711).

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Wang, J.-L., Yu, M., Su, X.-M. & Miao, F.-M. (2002). Acta Cryst. E58, o385– o387.